Powershell

Anything to do with Powershell scripting.
Copyright Notice

SFL Services LLC has prepared this document for use only by their staff, agents, customers and
prospective customers. Companies, names and data used as examples in this document are
fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of SFL Services LLC, who reserve the right to change specifications and other
information contained herein without prior notice. The reader should consult SFL Services LLC to
determine whether any such changes have been made.

Licensing and Warranty

The terms and conditions governing the licensing of SFL Services LLC software consist solely of
those set forth in the written contracts between SFL Services LLC and its customers. Except as
expressly provided for in the warranty provisions of those written contracts, no representation or
other affirmation of fact contained in this document, including but not limited to statements
regarding capacity, suitability for use or performance of products described herein, shall be
deemed to be a warranty by SFL Services LLC for any purpose, or give rise to any liability of SFL
Services LLC whatsoever.

Liability

In no event shall SFL Services LLC be liable for any incidental, indirect, special or consequential
damages whatsoever (including but not limited to lost profits) arising out of or related to this
document or the information contained in it, even if SFL Services LLC had been advised, knew or
should have known of the possibility of such damages, and even if they had acted negligently.

e Powershell - Printers

e Powershell - Search Active Directory using PowerShell ADSISearcher Filters

Powershell - Printers
Printers

Delete Printers

https://community.spiceworks.com/topic/1932797-use-powershell-to-delete-a-mapped-printer

Delete Network Printers

Look at printers

Get-WmiObject -Class Win32_Printer | where{$_.Network -eq 'true'}

Get-printer | where{$_.Network -eq 'true'}

Delete network printers
Get-WmiObject -Class Win32_Printer | where{$_.Network -eq 'true'} | foreach{$_.delete()}
Delete printers except for the following

Get-WmiObject -Class Win32_Printer | where{$_.name -notlike 'microsoft PDF'} | foreach{$_.delete()}

You can also do from any server login as admin you need to keep the name of computer in text file

$computers= get-content c:\computers.txt
foreach ($computer in $computers)

{Get-WmiObject -Class Win32_Printer -computername $computer | where{$_.name -notlike 'microsoft PDF'} |

foreach{$_.delete()}}

or against all computers in Ad.

https://community.spiceworks.com/topic/1932797-use-powershell-to-delete-a-mapped-printer

#ForEach ($COMPUTER in (GC c:\computers.txt))
ForEach ($COMPUTER in (Get-ADComputer -Filter {OperatingSystem -notLike "*Server*"} | Select -
ExpandProperty Name))

{if(!(Test-Connection -Cn $computer -BufferSize 16 -Count 1 -ea 0 -quiet))

{write-host "cannot reach $computer" -f red}

else {
Get-WmiObject -Class Win32_Printer -computername $computer | where{$_.name -notlike 'microsoft PDF'}|
foreach{$_.delete()}
}

Delete network printers

Create Function to Remove Printers
Function Delete-NetworkPrinters
{
$NetworkPrinters = Get-WmiObject -Class Win32_Printer | Where-Object{$_.Network -and $_.SystemName -
like "\\<servername>*" -or $_.Name -like "* on <servername>"}

If ($NetworkPrinters -ne $null)

{
Try
{
Foreach($NetworkPrinter in $NetworkPrinters)
{
0 $NetworkPrinter.Delete()
0 Write-Host "Successfully deleted the network printer:" + $NetworkPrinter.Name -ForegroundColor Green[]
}
}
Catch
{
Write-Host $_
}
}
Else
{
Write-Warning "Cannot find network printer in the currently environment."
}

Remove Printers

Delete-NetworkPrinters

Delete

get-printer \\server* | remove-printer

Powershell - Search Active
Directory using PowerShell
ADSISearcher Filters

https://www.alkanesolutions.co.uk/2021/03/03/search-active-directory-using-adsisearcher-filters/

How to Search

This post discusses how we can search Active Directory using PowerShell ADSISearcher filters.
Using search filters can improve search performance significantly.

Consider the following where we create a default ADSISearcher to begin searching Active Directory
(AD):

$objSearcher=[adsisearcher]""

If we used this default configuration, the ADSISearcher would search every object in every
organisation unit (OU) in AD. We would then need to filter which records we want to process in
some kind of iterative loop after the search results have been retrieved. This would be inefficient
and extremely slow.

Luckily the ADSISearcher is a type accelerator for System.DirectoryServices.DirectorySearcher,

which exposes a property called ‘Filter’.

We can use this to filter for only users like so:

$objSearcher.Filter = "(objectClass=user)"

or perhaps search for all disabled users:

$objSearcher.Filter = "(&(objectClass=user)(luserAccountControl:1.2.840.113556.1.4.803:=2))"

If we want to search for a specific user:

$objSearcher.Filter = "(&(objectClass=user)(sAMAccountName=alkaneuserl))"

https://www.alkanesolutions.co.uk/2021/03/03/search-active-directory-using-adsisearcher-filters/
https://docs.microsoft.com/en-us/dotnet/api/system.directoryservices.directorysearcher

or maybe we only know part of the username, and need to use the asterisk as a wildcard like so:

$objSearcher.Filter = "(&(objectClass=user)(sAMAccountName=*lkaneus*))"

What you may notice in the above examples is that we can also filter using AND or OR logical
operators.

The syntax for logical operators is an ampersand (&) for AND, and a pipe symbol (]) for OR. And all
of the expressions should be encased inside brackets.

Here we search where sAMAccountName is either alkaneuserl OR alkaneuser2:

(|(sAMAccountName=alkaneuserl)(sAMAccountName=alkaneuser2))

Here we search where sAMAccountName is alkaneuserl AND title is ‘Project Manager’:

(&(sAMAccountName=kt04ag)(title=Project Manager))

Here’s an example of how we could combine multiple logical operators to search for only user
objects AND search where sAMAccountName is alkaneuserl OR alkaneuser2:

$objSearcher.Filter =

"(&(objectClass=user)(|(sAMAccountName=alkaneuserl)(sAMAccountName=alkaneuser2)))"

Of course, it’s not only users we can search for. In this example we filter our search by computer
objects only AND where the computer is called alkanecomputerl:

$objSearcher.Filter = "(&(objectClass=computer)(Name=alkanecomputerl))"

The SearchRoot property can also optimise LDAP queries. By specifying this, we're only searching
in a specific OU as opposed to the whole of AD! We can specify this like so:

$objSearcher.SearchRoot = [ADSI]"LDAP://OU=Users,DC=alkanesolutions,DC=co,DC=uk"

Another important property to mention when searching AD is PageSize. If the data we are returning
contains more than 1000 items, we must page the results otherwise you’'ll likely run into
‘LDAP_SIZELIMIT_EXCEEDED’ errors. | typically set it to 200 like so:

$objSearcher.PageSize = 200

Another optimisation is to define which LDAP properties should be returned. There are many, many
LDAP roperties and if we don’t require them all we can significantly improve the speed of LDAP
queries by specifying only the properties we require like so:

$colProplist =
"name","givenname","distinguishedname","description","displayname","samaccountname","title","mail","depart
ment"

foreach ($i in $colPropList){$objSearcher.PropertiesToLoad.Add($i) | out-null }

Finally when we search AD using LDAP, we should already know if we're expecting many results or
just one result. If we're expecting many results we should use FindAll() and iterate through each
result like so:

$allObjects = $objSearcher.FindAll()

foreach ($obj in $allObjects) {

write-host ($obj.properties).name

write-host ($obj.properties).displayname
write-host ($obj.properties).givenname
write-host ($obj.properties).distinguishedname
write-host ($obj.properties).description
write-host ($obj.properties).samaccountname
write-host ($obj.properties).title

write-host ($obj.properties).mail

write-host ($obj.properties).department

}

However if we're only searching for one result (maybe to return information for a single user) we
should use FindOne() since it returns the first result only. We can use it like so:

$firstObject = $objSearcher.FindOne()

if ($firstObject -ne $null) {

write-host ($firstObject.properties).name

write-host ($firstObject.properties).displayname
write-host ($firstObject.properties).givenname
write-host ($firstObject.properties).distinguishedname
write-host ($firstObject.properties).description
write-host ($firstObject.properties).samaccountname
write-host ($firstObject.properties).title

write-host ($firstObject.properties).mail

write-host ($firstObject.properties).department

}

You can play around with the full script here:

$objSearcher=[adsisearcher]""

$objSearcher.Filter = "(&(objectClass=user)(sAMAccountName=alkaneuserl))"

#%$objSearcher.Filter = "(&(objectClass=user)(sAMAccountName=*lkaneus*))"
#$objSearcher.Filter =
"(&(objectClass=user)(|(sAMAccountName=alkaneuserl)(sAMAccountName=alkaneuser2)))"
#$objSearcher.Filter = "(&(objectClass=computer)(Name=alkanecomputerl))"
$objSearcher.PageSize = 200

$colProplist =
"name","givenname","distinguishedname","description","displayname","samaccountname","title","mail","depart
ment"

foreach ($i in $colProplList){$objSearcher.PropertiesToLoad.Add($i) | out-null }
$objSearcher.SearchRoot = [ADSI]"LDAP://OU=Users,DC=alkanesolutions,DC=co,DC=uk"
$allObjects = $objSearcher.FindAll()

foreach ($obj in $allObjects) {

write-host ($obj.properties).name

write-host ($obj.properties).displayname

write-host ($obj.properties).givenname

write-host ($obj.properties).distinguishedname

write-host ($obj.properties).description

write-host ($obj.properties).samaccountname

write-host ($obj.properties).title

write-host ($obj.properties).mail

write-host ($obj.properties).department

}

$firstObject = $objSearcher.FindOne()

if ($firstObject -ne $null) {

write-host ($firstObject.properties).name

write-host ($firstObject.properties).displayname

write-host ($firstObject.properties).givenname

write-host ($firstObject.properties).distinguishedname

write-host ($firstObject.properties).description

write-host ($firstObject.properties).samaccountname

write-host ($firstObject.properties).title

write-host ($firstObject.properties).mail

write-host ($firstObject.properties).department

}

