
Apache - Server Multiple Site
Setup

What you’ll need
A server running Rocky 9 Linux
Know the vi text editor, here's a handy tutorial.
Basic knowledge of installing and running web services
For those looking for a similar setup for Nginx, examine this guide.

Rocky 9 Installation
Minimal Installation .ISO

Install required system packages

Install MsSQL ODBC

dnf -y upgrade
dnf install epel-release -y
dnf -y upgrade

dnf install bind-utils bzip2 cups cifs-utils enscript ftp gdb ghostscript java-1.8.0-openjdk-headless java-11-
openjdk-headless krb5-workstation ksh lftp lrzsz lsof libnsl lzop mariadb-server mlocate mutt ncompress net-
tools net-snmp net-snmp-utils net-tools nfs-utils nmap nvme-cli openldap-clients openssh-clients psmisc realmd
rsync samba-client strace sysstat tcpdump telnet telnet-server tmux unix2dos vim vim-enhanced vsftpd wget
xfsdump vsftpd htop mc rsyslog rsyslog-doc postfix dbus-daemon s-nail git composer -y

curl https://packages.microsoft.com/config/rhel/8/prod.repo > /etc/yum.repos.d/msprod.repo
dnf remove mssql-tools unixODBC-utf16-devel
dnf install mssql-tools unixODBC-devel -y

https://www.tutorialspoint.com/unix/unix-vi-editor.htm
https://docs.rockylinux.org/guides/web/nginx-multisite/

 Install Apache
You will likely need other packages for your website, such as PHP, database, or other packages.
Installing PHP along with http will get you the most recent version from the Rocky Linux
repositories.

Just remember that you may need modules, such as php-bcmath or php-mysqlind . Your web
application specifications will dictate what you need. You can install these when needed. For now,
you will install http and PHP, as those are almost a forgone conclusion:

From the command-line run:

Add the REMI php upgrades to Rocky

Look to see which version you wish to install

We will install the latest 8.0 if not php is installed to be able to upgrade and install php-sqlsrv

Add more of the php tools

Installed the MySql to MsSQL connection

Verify the installation afterwards

dnf -y install httpd php mod_ssl openssh

dnf install https://rpms.remirepo.net/enterprise/remi-release-9.rpm -y
dnf module reset php -y

dnf module list php -y

dnf module install php:remi-8.2 -y

dnf -y install php-dbg php-pear php-ldap php-odbc php-pgsql php-bcmath php-gd php-pdo php-intl php-json php-
enchant php-pecl-apcu php-mbstring php-devel php-snmp php-embedded php-pecl-zip php-fpm php-mysqlnd
php-opcache php-dba php-process php-gmp php-common php-soap php-xml php-cli php-gd php-mysql
dnf -y install fail2ban

sudo yum install php-sqlsrv -y

php -v

Add extra directories
This method uses a couple of additional directories, which do not currently exist on the system. You
need to add two directories in /etc/httpd/ called "sites-available" and "sites-enabled."

From the command-line enter:

This will create both needed directories.

You also need a directory where our sites are going to be. This can be anywhere, but a good way to
keep things organized is to create a "sub-domains" directory. Put this in /var/www: mkdir
/var/www/sub-domains/ to decrease complexity.

MySQL Configuration
This to configure mariadb database

Create users, Run “mysql” and execute the fallowing statements: (change passwords as
needed)

Add below “[mysqld]” in “vi /etc/my.cnf.d/mariadb-server.cnf”

mkdir -p /etc/httpd/sites-available /etc/httpd/sites-enabled

CREATE USER 'webftp'@'%' IDENTIFIED BY 'XXXXXXXX';
GRANT all ON *.* TO 'webftp'@'%' WITH GRANT OPTION;
CREATE USER 'webftp'@'localhost' IDENTIFIED BY 'XXXXXXXX';
GRANT all ON *.* TO 'webftp'@'localhost' WITH GRANT OPTION;
FLUSH PRIVILEGES;
Quit

#Custom
performance_schema = ON
tmpdir = /run/mariadb
thread_cache_size = 4
table_open_cache = 16384
expire_logs_days = 2
table_definition_cache = 8384
sql_mode = ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION

Run this to reload for changes

Enable MySql to restart on boot

Configuration
You also need to add a line to the bottom of the httpd.conf file. To do this, enter:

and go to the bottom of the file and add:

query_cache_type = 0
query_cache_size = 0
query_cache_limit = 128M
query_cache_strip_comments = 1

tmp_table_size = 512M
max_heap_table_size = 512M

max_connections = 512
max_allowed_packet = 24M
sort_buffer_size = 24M
join_buffer_size = 48M

innodb_buffer_pool_size = 4G
innodb_buffer_pool_instances = 4
innodb_use_native_aio = 1
innodb_flush_log_at_trx_commit = 0
innodb_file_per_table
innodb_log_file_size = 512M

log_bin = /var/log/mariadb/mariadb.log
expire_logs_days = 2

systemctl daemon-reload

systemctl enable --now mariadb.service

vi /etc/httpd/conf/httpd.conf

Our actual configuration files will be in /etc/httpd/sites-available and you will symlink to them in
/etc/httpd/sites-enabled.

Why do you do this?

Say you have 10 websites all running on the same server on different IP addresses. Say that site B
has some major updates, and you have to make changes to the configuration for that site. Say also
that something goes wrong with the changes made, and when you restart httpd to read in the
changes, httpd does not start. Not only will the site you were working on not start, but neither will
the rest of them. With this method, you can remove the symbolic link for the site that caused the
problem, and restart httpd . It will start working again, and you fix the broken site's configuration.

It takes the pressure off, knowing the telephone will not ring with some upset customer or boss
because a service is off-line.

The site configuration
The other benefit of this method is that it allows us to fully specify everything outside the default
httpd.conf file. The default httpd.conf file loads the defaults, and your site configurations do

everything else. Great, right? Plus again, it makes troubleshooting a broken site configuration less
complex.

Say you have a website that loads a wiki. You will need a configuration file, which makes the site
available on port 80.

If you want to serve the website with SSL/TLS (and face it, in most cases you do), you need to add
another (nearly the same) section to that file to enable port 443.

You can examine that below in the Configuration https using An SSL/TLS certificate section.

You first need to create this configuration file in sites-available:

The configuration file content will look something like this:

IncludeOptional sites-enabled/*.conf

vi /etc/httpd/sites-available/com.wiki.www

<VirtualHost *:80>
 ServerName your-server-hostname
 ServerAdmin username@rockylinux.org
 DocumentRoot /var/www/sub-domains/your-server-hostname/html
 DirectoryIndex index.php index.htm index.html

https://docs.rockylinux.org/guides/web/apache-sites-enabled/#configuration-https-using-an-ssltls-certificate

When created, you need to write (save) it with Shift+:+W+Q.

In the example, loading the wiki site happens from the "html" subdirectory of your-server-
hostname, which means that the path you created in /var/www (above) will need some additional
directories to satisfy this:

This will create the entire path with a single command. Next you want to install your files to this
directory that will actually run the website. This might be something you made yourself, or an
installable web application (in this case a wiki) that you downloaded.

Copy your files to the path you created:

Configuration https using an
SSL/TLS certificate
As stated earlier, every web server created these days should be running with SSL/TLS (the secure
socket layer).

 Alias /icons/ /var/www/icons/
 # ScriptAlias /cgi-bin/ /var/www/sub-domains/your-server-hostname/cgi-bin/

 CustomLog "/var/log/httpd/your-server-hostname-access_log" combined
 ErrorLog "/var/log/httpd/your-server-hostname-error_log"

 <Directory /var/www/sub-domains/your-server-hostname/html>
 Options -ExecCGI -Indexes
 AllowOverride None

 Order deny,allow
 Deny from all
 Allow from all

 Satisfy all
 </Directory>
</VirtualHost>

mkdir -p /var/www/sub-domains/your-server-hostname/html

cp -Rf wiki_source/* /var/www/sub-domains/your-server-hostname/html/

This process starts by generating a private key and CSR (certificate signing request) and
submitting the CSR to the certificate authority to buy the SSL/TLS certificate. The process of
generating these keys is somewhat extensive.

If you are not familiar with SSL/TLS key generation examine: Generating SSL Keys

You can also use this alternate process, using an SSL certificate from Let's Encrypt

Placement of the SSL/TLS keys and
certificates¶
Since you have your keys and certificate files, you need to place them logically in your file system
on the web server. As you have seen with the example configuration file, you are placing your web
files in /var/www/sub-domains/your-server-hostname/html .

You want to place your certificate and key files with the domain, but outside of the document root,
which in this case is the html folder.

You never want to risk exposing your certificates and keys to the web. That would be bad!

Instead, you will create a directory structure for our SSL/TLS files, outside the document root:

If you are new to the "tree" syntax for making directories, what the above says is:

"Make a directory called "ssl" and make three directories inside called ssl.key, ssl.crt, and ssl.csr."

Just a note ahead of time: Storing the certificate signing request (CSR) file in the tree is not
necessary, but it simplifies some things. If you ever need to re-issue the certificate from a different
provider, having a stored copy of the CSR is a good idea. The question becomes where can you
store it so that you will remember, and storing it within the tree of your website is logical.

Assuming that you have named your key, csr, and crt (certificate) files with the name of your site,
and that you have them stored in /root, you will copy them up to their locations:

mkdir -p /var/www/sub-domains/your-server-hostname/ssl/{ssl.key,ssl.crt,ssl.csr}

cp /root/com.wiki.www.key /var/www/sub-domains/your-server-hostname/ssl/ssl.key/
cp /root/com.wiki.www.csr /var/www/sub-domains/your-server-hostname/ssl/ssl.csr/
cp /root/com.wiki.www.crt /var/www/sub-domains/your-server-hostname/ssl/ssl.crt/

https://docs.rockylinux.org/guides/security/ssl_keys_https/
https://docs.rockylinux.org/guides/security/generating_ssl_keys_lets_encrypt/
https://docs.rockylinux.org/guides/web/apache-sites-enabled/#placement-of-the-ssltls-keys-and-certificates

The site configuration - https
Once you have generated your keys and purchased the SSL/TLS certificate, you can move forward
with the website configuration using your keys.

For starters, break down the beginning of the configuration file. For instance, even though you still
want to listen on port 80 (standard http port) for incoming requests, you do not want any of those
requests to actually go to port 80.

You want them to go to port 443 (or " http secure", better known as SSL/TLS or https). Our port
80 configuration section will be minimal:

What this says is to send any regular web request to the https configuration instead. The apache
"Redirect" option shown is temporary. When testing is complete and you can see that the site is
running as expected, you can change this to "Redirect permanent."

A permanent redirect will teach the search engines, and soon any traffic to your site that comes
from search engines will go only to port 443 (https) without hitting port 80 (http) first.

Next, you need to define the https part of the configuration file:

<VirtualHost *:80>
 ServerName your-server-hostname
 ServerAdmin username@rockylinux.org
 Redirect / https://your-server-hostname/
</VirtualHost>

<VirtualHost *:80>
 ServerName your-server-hostname
 ServerAdmin username@rockylinux.org
 Redirect / https://your-server-hostname/
</VirtualHost>
<Virtual Host *:443>
 ServerName your-server-hostname
 ServerAdmin username@rockylinux.org
 DocumentRoot /var/www/sub-domains/your-server-hostname/html
 DirectoryIndex index.php index.htm index.html
 Alias /icons/ /var/www/icons/
 # ScriptAlias /cgi-bin/ /var/www/sub-domains/your-server-hostname/cgi-bin/

 CustomLog "/var/log/`http`d/your-server-hostname-access_log" combined
 ErrorLog "/var/log/`http`d/your-server-hostname-error_log"

So, breaking down this configuration further, after the normal portions of the configuration and
down to the SSL/TLS section:

SSLEngine on - says to use SSL/TLS
SSLProtocol all -SSLv2 -SSLv3 -TLSv1 - says to use all available protocols, except those
with vulnerabilities. You should research periodically the protocols currently acceptable for
use.
SSLHonorCipherOrder on - this deals with the next line regarding the cipher suites, and
says to deal with them in the order shown. This is another area where reviewing the
cipher suites should occur periodically.
SSLCertificateFile - is exactly what it says: the newly purchased and applied certificate file
and its location
SSLCertificateKeyFile - the key you generated when creating your certificate signing
request

 SSLEngine on
 SSLProtocol all -SSLv2 -SSLv3 -TLSv1
 SSLHonorCipherOrder on
 SSLCipherSuite
EECDH+ECDSA+AESGCM:EECDH+aRSA+AESGCM:EECDH+ECDSA+SHA384:EECDH+ECDSA+SHA256:EECDH+a
RSA+SHA384
:EECDH+aRSA+SHA256:EECDH+aRSA+RC4:EECDH:EDH+aRSA:RC4:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PS
K:!SRP:!DSS

 SSLCertificateFile /var/www/sub-domains/your-server-hostname/ssl/ssl.crt/com.wiki.www.crt
 SSLCertificateKeyFile /var/www/sub-domains/your-server-hostname/ssl/ssl.key/com.wiki.www.key
 SSLCertificateChainFile /var/www/sub-domains/your-server-
hostname/ssl/ssl.crt/your_providers_intermediate_certificate.crt

 <Directory /var/www/sub-domains/your-server-hostname/html>
 Options -ExecCGI -Indexes
 AllowOverride None

 Order deny,allow
 Deny from all
 Allow from all

 Satisfy all
 </Directory>
</VirtualHost>

SSLCertificateChainFile - the certificate from your certificate provider, often called the
intermediate certificate

Take everything live and if no errors exist when starting the web service, and if going to your
website reveals https without errors, you are ready to go.

Taking it live
Remember that our httpd.conf file is including /etc/httpd/sites-enabled at the end of the file. When
httpd restarts, it will load whatever configuration files are in that sites-enabled directory. Thing is,

all of our configuration files are in sites-available.

That is by design, so that you can remove things when or if httpd fails to restart. To enable our
configuration file, you need to create a symbolic link to that file in sites-enabled and start or restart
the web service. To do this, you use this command:

This will create the link to the configuration file in sites-enabled.

Now just start httpd with systemctl start httpd . Or restart it if it is already running: systemctl restart
httpd , and assuming the web service restarts, you can now go and do some testing on your site.

Migrating from old server to new
another
Copy the data

Restore the MySQL databases with a specific date your want to use.

ln -s /etc/httpd/sites-available/your-server-hostname /etc/httpd/sites-enabled/

rsync -chavzP --stats -e ssh root@sfl-web-004:/opt/ /opt/
rsync -chavzP --stats -e ssh root@sfl-web-004:/var/www/html/ /var/www/html/
rsync -chavzP --stats -e ssh root@sfl-web-004:/etc/httpd/sites-available/ /etc/httpd/sites-available/
rsync -chavzP --stats -e ssh root@sfl-web-004:/etc/httpd/sites-enabled/ /etc/httpd/sites-enabled/
rsync -chavzP --stats -e ssh root@sfl-web-004:/etc/pki/tls/private/ /etc/pki/tls/private/
rsync -chavzP --stats -e ssh root@sfl-web-004:/etc/pki/tls/certs/ /etc/pki/tls/certs/

SAMBA Configuration
This is to setup samba on the pc to transfer file more easily.

Backup the original setup file

Edit the config file with vi or nano

cd /opt/backups/byhour
gunzip 2024-05-21_21.*
2024-05-21_21.hdrwp01.sql
2024-05-21_21.llc.sql
2024-05-21_21.mcwp.sql
2024-05-21_21.mfbforum.sql
2024-05-21_21.mfbwp.sql
2024-05-21_21.ogforum.sql
2024-05-21_21.ogwp.sql
2024-05-21_21.sign.sql
mysql -f -e "CREATE DATABASE hdrwp01;"
mysql -f -e "CREATE DATABASE llc;"
mysql -f -e "CREATE DATABASE mcwp;"
mysql -f -e "CREATE DATABASE mfbforum;"
mysql -f -e "CREATE DATABASE mfbwp;"
mysql -f -e "CREATE DATABASE ogforum;"
mysql -f -e "CREATE DATABASE ogwp;"
mysql -f hdrwp01 < 2024-05-21_21.hdrwp01.sql
mysql -f llc < 2024-05-21_21.llc.sql;
mysql -f mcwp < 2024-05-21_21.mcwp.sql
mysql -f mfbforum < 2024-05-21_21.mfbforum.sql
mysql -f mfbwp < 2024-05-21_21.mfbwp.sql
mysql -f ogforum < 2024-05-21_21.ogforum.sql
mysql -f ogwp < 2024-05-21_21.ogwp.sql
mysql -f sign < 2024-05-21_21.sign.sql

dnf -y samba samba-common samba-client

mv /etc/samba/smb.conf /etc/samba/smb.conf.bak

vi /etc/samba/smb.conf

Change and add the following, leave the rest as is

[global]
 workgroup = ONLING
 security = user
 server string = Samba Server %v
 netbios name = sfl-web-004
 map to guest = bad user
 dns proxy = no
 ntlm auth = true

[web]
 comment = apache
 path = /var/www/html
 browsable =yes
 writable = yes
 guest ok = yes
 read only = no
 force user = apache
 force group = apache

Revision #1
Created 2 September 2024 22:29:44 by Steve Ling
Updated 2 September 2024 22:36:05 by Steve Ling

